≡
  • 网络编程
  • 网络文章
  • CMS技巧
  • 软件编程
  • PHP笔记
  • JavaScript
  • 网络昵称
位置:四海网 > 网络文章 > 句子大全 >

精选罗素悖论的数学表达50句文案集锦

人气:59 时间:2023-05-16 01:51:31

一、罗素悖论的数学表达

1、“披萨”这个词也不是自然数,所以它是集合成员。

2、罗素悖论(Russell’sParadox)

3、不妨设所有不包括自己的集合组成集合A:

4、这时候罗素老师重申:这个班里禁止套娃!!!各位集合们,如果你是自己的元素,请离开教室。有的集合这才发现自己是套娃,赶紧告辞。

5、(1)如果A包括其自身,那么很好!A会满足“成为A的一个成员”的条件——包括其自身/自含。

6、但当我们考虑A的相反项——“所有‘不’自含集合的集合”(thesetofallsetsthatdonotcontainthemselvesaselements)——悖论就出现了。

7、如果强盗把商人杀了,就说明商人猜对了,这样就应该把商人放了;如果强盗把商人放了,商人就说错了,强盗应该杀掉他才对。

8、怎么能让他知道自己和别人不一样?

9、一个关于变量的有限聚集,比如x、y、z,应该是一个集合。

10、罗素悖论中有许多例子,其中一个很通俗也很有名的例子就是“理发师悖论”:某乡村有一位理发师,有一天他宣布:只给不自己刮胡子的人刮胡子。那么就产生了一个问题:理发师究竟给不给自己刮胡子?如果他给自己刮胡子,他就是自己刮胡子的人,按照他的原则,他又不该给自己刮胡子;如果他不给自己刮胡子,那么他就是不自己刮胡子的人,按照他的原则,他又应该给自己刮胡子。这就产生了矛盾。

11、罗素悖论的出现直接导致了一场数学危机,它促使数学家认识到将数学基础公理化的必要性。

12、牛也有KPI?每天准时定量吃草,目标吃遍整片牧场!

13、萨维尔村理发师推出一块招牌:“理发师只给所有不给自己理发的人理发。”

14、同时,我们对于下述建构也要谨慎得多,比如“不是自然数的‘所有东西’的集合”(thesetofeverythingthatisnotanaturalnumber)。

15、如果苯酚们去问一个数学家罗素悖论是什么,他们会甩过来两行字:

16、所以,如果B包括其自身,那么它就与我们用来定义B的条件矛盾了,所以B不包括其自身。

17、我们知道上帝是万能的,那么上帝能否造出一个他自己也举不起石头么?

18、M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。问,你来这里做什么?M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。

19、20世纪20年代,在集合论不断发展的基础上,大数学家希尔伯特向全世界的数学家抛出了个宏伟计划,其大意是建立一组公理体系,使一切数学命题原则上都可由此经有限步推定真伪,这叫做公理体系的“完备性”;希尔伯特还要求公理体系保持“独立性”(即所有公理都是互相独立的,使公理系统尽可能的简洁)和“无矛盾性”(即相容性,不能从公理系统导出矛盾)。

20、所以正整数集合和正偶数集合元素个数是一样多的。

二、罗素悖论是什么

1、M:一天,有个旅游者回答——旅游者:我来这里是要被绞死。M:这时,卫兵也和鳄鱼一样慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。

2、数学家GeorgCantor和其他早期集合论者,在如今被我们称为“朴素集合论”(naivesettheory)的框架内工作。

3、再比如欧几里得提出的说谎者悖论,他说“我正在说的这句话是谎话。”

4、十九世纪下半叶,康托尔创立了著名的集合论。

5、比如,自然数集,再比如,所有的未成年人,等等。这个假设看起来很容易使人信服,但这种不受任何限制的建构集合的方式,就出现了问题。

6、若Q∉P,根据第一类集合的定义,A∈A,所以Q∉Q,而根据第二类集合的定义,所以Q∈Q,根据第一类集合的定义,A∈A,所以Q∈P,引出矛盾。

7、百万美金的召唤——世界七大数学未解难题,究竟有希望破解吗?

8、时间悖论最早是在科幻小说中提到的。这个悖论的必要前提是:人类可以随心所欲的控制三维空间之后的“第四维”——时间,能够回到过去或者将来。在这个前提下,有多种“时间悖论”的表达方式。

9、你知道这里的悖论怪圈吗?

10、有一天一名顾客来到了店里看到了这块牌子,他就问理发师:你给自己刮胡子吗?

11、目前,关于数学基础的各派思想依然层出不穷,至今没有形成一个在数学界被普遍接受的理论。

12、作者介绍:杨浩,新东方智慧学堂授课老师,北大学士。全国高中数学联赛一等奖,高中物理竞赛一等奖,获得北京大学自主招生60分降分。

13、问题:Q∈P还是Q∉P?

14、怎么证明你不是这个患奇怪色盲的人?

15、若S属于自身,那么S就不满足集合规定的元素性质,它不应该属于自身S;

16、总之,这门学科的重要性已经十分明显,它已经引起了很多人的关心和重视。

17、毕达哥拉斯(公元前五世纪古希腊的著名数学家与哲学家)创立了一个集政治、学术、宗教三位一体的神秘主义学派。“万物皆数”是该学派的哲学基石,主张“数”是万物的本原、始基,“一切数均可表示成整数或整数之比”则是这一学派的数学信仰。

18、别忘了把“哲园”也分享给身边爱好哲学、喜欢智慧的小伙伴哦!

19、了解了这个理发师的困惑,这不就是外国版的“自相矛盾”吗?其实,这个“理发师悖论”很容易解决,只需要修改一下理发师的规矩,将他自己排除在规矩之外。然而,罗素悖论是由集合论的基本原理严格推导得来,就不是那么容易解决的了。

20、理发师悖论可以表达成集合论的形式,就是罗素悖论。R={x|x不属于x},然后现在问R是否属于R。如果R不属于R,那么根据定义,R属于R;如果R属于R,那么根据定义,R不属于R。

三、罗素悖论通俗叫做

1、任意一个包含一阶谓词逻辑与初等数论的形式系统,都存在一个命题,它在这个系统中既不能被证明为真,也不能被证明为否。

2、有时候,数学的问题,可以在数学之外得到解决。

3、集合中元素的数目称为集合的基数,集合A的基数记作card(A)。当其为有限大时,集合A称为有限集,反之则为无限集。

4、如果哲学家说的是对的,那么同为克里特岛的人,哲学家就在说谎,他的话就是错的;反之,假如哲学家说的不对,那么克里特岛的人都不说谎,他的话就是对的。

5、我这里就不剧透故事了。

6、以上文章观点仅代表文章作者,仅供参考,以抛砖引玉!

7、一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。

8、一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。

9、维特根斯坦反复强调:“数学家不是发现者,而是发明者。”,又说“数学家一直在发明新的描述形式。有的人受实际需要的刺激,另一些人出自审美需要,还有些人以其他种种方式。”

10、萨魏尔村有一位理发师,他给自己订下一条规则:他只给村子里自己不给自己刮胡子的人刮胡子。

您可能感兴趣的文章

  • 精选有关青春的句子摘抄
  • 精选感恩节海报手绘14
  • 精选母爱是什么样的79句
  • 精选感恩节文案句子12
  • 精选歌德耳机特点115句文
  • 精选感恩节文案简短幼儿
  • 精选歌德学院官网140句文
  • 精选感恩节ppt幼儿园99句
  • 精选感恩有你ppt115句文案
  • 精选关于英雄致敬的名言
上一篇:2023谢卓燃的抖音唯美说说(得到我的爱,你一定会幸福,哀)
下一篇:没有了
热门文章
  • 警句大全60句100句文案精选
  • 浩浩荡荡的意思100句文案
  • 团结的名言30句100句文案精
  • 爱情短语八个字100句文案
  • 最打动人的爱情宣言100句
  • 感叹时光匆匆的句子100句
  • 一会儿一会儿造句100句文
  • 关于友谊的神仙文案100句
  • 朗诵祖国100句文案精选
  • 经典句子说说心情100句文
  • 最新文章
    • 精选罗素悖论的数学表达
    • 2023谢卓燃的抖音唯美说说
    • 蓝岭号的微信心情说说(如
    • 精选有关青春的句子摘抄
    • 精选感恩节海报手绘141句
    • 西通的qq心情说说(怕永不
    • 山蜜草的微博伤感说说(在
    • 精选母爱是什么样的79句文
    • 精选感恩节文案句子120句
    • 2023杨永明的抖音难过说说

四海网收集整理一些常用的php代码,JS代码,网络文章,网络昵称等技术文章。