≡
  • 网络编程
  • 数据库
  • CMS技巧
  • 软件编程
  • PHP笔记
  • JavaScript
  • MySQL
位置:首页 > 网络编程 > Python

python之pytorch计算 kl散度 F.kl_div()的简单示例

人气:403 时间:2021-06-02

这篇文章主要为大家详细介绍了python之pytorch计算 kl散度 F.kl_div()的简单示例,具有一定的参考价值,可以用来参考一下。

感兴趣的小伙伴,下面一起跟随四海网的雯雯来看看吧!

先附上官方文档说明:https://pytorch.org/docs/stable/nn.functional.html

torch.nn.functional.kl_div(input, target, size_average=None, reduce=None, reduction='mean')

Parameters

input – Tensor of arbitrary shape

target – Tensor of the same shape as input

size_average (bool, optional) – Deprecated (see reduction). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field size_average is set to False, the losses are instead summed for each minibatch. Ignored when reduce is False. Default: True

reduce (bool, optional) – Deprecated (see reduction). By default, the losses are averaged or summed over observations for each minibatch depending on size_average. When reduce is False, returns a loss per batch element instead and ignores size_average. Default: True

reduction (string, optional) – Specifies the reduction to apply to the output: 'none' | 'batchmean' | 'sum' | 'mean'. 'none': no reduction will be applied 'batchmean': the sum of the output will be divided by the batchsize 'sum': the output will be summed 'mean': the output will be divided by the number of elements in the output Default: 'mean'

然后看看怎么用:

第一个参数传入的是一个对数概率矩阵,第二个参数传入的是概率矩阵。这里很重要,不然求出来的kl散度可能是个负值。

比如现在我有两个矩阵X, Y。因为kl散度具有不对称性,存在一个指导和被指导的关系,因此这连个矩阵输入的顺序需要确定一下。

举个例子:

如果现在想用Y指导X,第一个参数要传X,第二个要传Y。就是被指导的放在前面,然后求相应的概率和对数概率就可以了。

代码如下:


import torch
import torch.nn.functional as F
# 定义两个矩阵
x = torch.randn((4, 5))
y = torch.randn((4, 5))
# 因为要用y指导x,所以求x的对数概率,y的概率
logp_x = F.log_softmax(x, dim=-1)
p_y = F.softmax(y, dim=-1)
 
 
kl_sum = F.kl_div(logp_x, p_y, reduction='sum')
kl_mean = F.kl_div(logp_x, p_y, reduction='mean')
 
print(kl_sum, kl_mean)
 
 
>>> tensor(3.4165) tensor(0.1708)

pytorch 实现计算 kl散度 F.kl_div()

 

补充:pytorch中的kl散度,为什么kl散度是负数?

 

F.kl_div()或者nn.KLDivLoss()是pytroch中计算kl散度的函数,它的用法有很多需要注意的细节。

输入

第一个参数传入的是一个对数概率矩阵,第二个参数传入的是概率矩阵。并且因为kl散度具有不对称性,存在一个指导和被指导的关系,因此这连个矩阵输入的顺序需要确定一下。如果现在想用Y指导X,第一个参数要传X,第二个要传Y。就是被指导的放在前面,然后求相应的概率和对数概率就可以了。

所以,一随机初始化一个tensor为例,对于第一个输入,我们需要先对这个tensor进行softmax(确保各维度和为1),然后再取log;对于第二个输入,我们需要对这个tensor进行softmax。

代码如下:


import torch
import torch.nn.functional as F

a = torch.tensor([[0,0,1.1,2,0,10,0],[0,0,1,2,0,10,0]])
log_a =F.log_softmax(a)

b = torch.tensor([[0,0,1.1,2,0,7,0],[0,0,1,2,0,10,0]])
softmax_b =F.softmax(b,dim=-1)

kl_mean = F.kl_div(log_a, softmax_b, reduction='mean')
print(kl_mean)

pytorch 实现计算 kl散度 F.kl_div()

为什么KL散度计算出来为负数

先确保对第一个输入进行了softmax+log操作,对第二个参数进行了softmax操作。不进行softmax操作就可能为负。

然后查看自己的输入是否是小数点后有很多位,当小数点后很多位的时候,pytorch下的softmax会产生各维度和不为1的现象,导致kl散度为负,如下所示:

代码如下:


a = torch.tensor([[0.,0,0.000001,0.0000002,0,0.0000007,0]])
log_a =F.log_softmax(a,dim=-1)
print("log_a:",log_a)

b = torch.tensor([[0.,0,0.000001,0.0000002,0,0.0000007,0]])
softmax_b =F.softmax(b,dim=-1)
print("softmax_b:",softmax_b)

kl_mean = F.kl_div(log_a, softmax_b,reduction='mean')
print("kl_mean:",kl_mean)

pytorch 实现计算 kl散度 F.kl_div()

输出如下,我们可以看到softmax_b的各维度和不为1:

以上为个人经验,希望能给大家一个参考,也希望大家多多支持四海网。

本文来自:http://www.q1010.com/181/18454-0.html

注:关于python之pytorch计算 kl散度 F.kl_div()的简单示例的内容就先介绍到这里,更多相关文章的可以留意四海网的其他信息。

关键词:python

您可能感兴趣的文章

  • python的matplotlib库绘图的实现方法
  • python3读取文件指定行的三种简单示例
  • python之pandas中DataFrame重置索引的几种示例
  • python之计算圆周率π的的实现方法
  • python之pytorch中Schedule与warmup_steps的简单示例
  • python之pandas取dataframe特定行列的简单示例
  • 解决pytorch中的kl divergence计算问题
  • python之pytorch使用amp进行混合精度训练的实现方法
  • python之PyTorch梯度裁剪避免训练loss nan的操作示例
  • python之字符串转日期的简单示例
上一篇:python之pytorch二分类交叉熵逆样本频率权重的简单示例
下一篇:python之pytorch使用amp进行混合精度训练的实现方法
热门文章
  • Python 处理Cookie的菜鸟教程(一)Cookie库
  • python之pandas取dataframe特定行列的简单示例
  • Python解决json.dumps错误::‘utf8’ codec can‘t decode byte
  • Python通过pythony连接Hive执行Hql的脚本
  • Python 三种方法删除列表中重复元素的简单示例
  • python爬虫代码示例
  • Python 中英文标点转换示例
  • Python 不得不知的开源项目解析
  • Python urlencode编码和url拼接实现方法
  • python按中文拆分中英文混合字符串的简单示例
  • 最新文章
    • Python利用numpy三层神经网络的简单示例
    • pygame可视化幸运大转盘的简单示例
    • Python爬虫之爬取二手房信息的简单示例
    • Python之time库的简单示例
    • OpenCV灰度、高斯模糊、边缘检测的简单示例
    • Python安装Bs4及使用的简单示例
    • django自定义manage.py管理命令的简单示例
    • Python之matplotlib 向任意位置添加一个子图(axes)的简单示例
    • Python图像标签标注软件labelme分析的简单示例
    • python调用摄像头并拍照发邮箱的简单示例

四海网收集整理一些常用的php代码,JS代码,数据库mysql等技术文章。