≡
  • 网络编程
  • 数据库
  • CMS技巧
  • 软件编程
  • PHP笔记
  • JavaScript
  • MySQL
位置:首页 > 网络编程 > Python

python之pytorch中的squeeze函数、cat函数用法示例

人气:548 时间:2021-06-02

这篇文章主要为大家详细介绍了python之pytorch中的squeeze函数、cat函数用法示例,具有一定的参考价值,可以用来参考一下。

感兴趣的小伙伴,下面一起跟随四海网的雯雯来看看吧!

1 squeeze(): 去除size为1的维度,包括行和列。

至于维度大于等于2时,squeeze()不起作用。

行、例:

代码如下:


>>> torch.rand(4, 1, 3)
 
(0 ,.,.) =
  0.5391  0.8523  0.9260
 
(1 ,.,.) =
  0.2507  0.9512  0.6578
 
(2 ,.,.) =
  0.7302  0.3531  0.9442
 
(3 ,.,.) =
  0.2689  0.4367  0.6610
[torch.FloatTensor of size 4x1x3]

pytorch中的squeeze函数、cat函数使用

代码如下:


>>> torch.rand(4, 1, 3).squeeze()
 
 0.0801  0.4600  0.1799
 0.0236  0.7137  0.6128
 0.0242  0.3847  0.4546
 0.9004  0.5018  0.4021
[torch.FloatTensor of size 4x3]

pytorch中的squeeze函数、cat函数使用

列、例:

代码如下:


>>> torch.rand(4, 3, 1)
 
(0 ,.,.) =
  0.7013
  0.9818
  0.9723
 
(1 ,.,.) =
  0.9902
  0.8354
  0.3864
 
(2 ,.,.) =
  0.4620
  0.0844
  0.5707
 
(3 ,.,.) =
  0.5722
  0.2494
  0.5815
[torch.FloatTensor of size 4x3x1]

pytorch中的squeeze函数、cat函数使用

代码如下:


>>> torch.rand(4, 3, 1).squeeze()
 
 0.8784  0.6203  0.8213
 0.7238  0.5447  0.8253
 0.1719  0.7830  0.1046
 0.0233  0.9771  0.2278
[torch.FloatTensor of size 4x3]

pytorch中的squeeze函数、cat函数使用

不变、例:

代码如下:


>>> torch.rand(4, 3, 2)
 
(0 ,.,.) =
  0.6618  0.1678
  0.3476  0.0329
  0.1865  0.4349
 
(1 ,.,.) =
  0.7588  0.8972
  0.3339  0.8376
  0.6289  0.9456
 
(2 ,.,.) =
  0.1392  0.0320
  0.0033  0.0187
  0.8229  0.0005
 
(3 ,.,.) =
  0.2327  0.6264
  0.4810  0.6642
  0.8625  0.6334
[torch.FloatTensor of size 4x3x2]

pytorch中的squeeze函数、cat函数使用

代码如下:


>>> torch.rand(4, 3, 2).squeeze()
 
(0 ,.,.) =
  0.0593  0.8910
  0.9779  0.1530
  0.9210  0.2248
 
(1 ,.,.) =
  0.7938  0.9362
  0.1064  0.6630
  0.9321  0.0453
 
(2 ,.,.) =
  0.0189  0.9187
  0.4458  0.9925
  0.9928  0.7895
 
(3 ,.,.) =
  0.5116  0.7253
  0.0132  0.6673
  0.9410  0.8159
[torch.FloatTensor of size 4x3x2]

pytorch中的squeeze函数、cat函数使用

2 cat函数

代码如下:


>>> t1=torch.FloatTensor(torch.randn(2,3))
>>> t1
 
-1.9405  1.2009  0.0018
 0.9463  0.4409 -1.9017
[torch.FloatTensor of size 2x3]

pytorch中的squeeze函数、cat函数使用

代码如下:


>>> t2=torch.FloatTensor(torch.randn(2,2))
>>> t2
 
 0.0942  0.1581
 1.1621  1.2617
[torch.FloatTensor of size 2x2]

pytorch中的squeeze函数、cat函数使用

代码如下:


>>> torch.cat((t1, t2), 1)
 
-1.9405  1.2009  0.0018  0.0942  0.1581
 0.9463  0.4409 -1.9017  1.1621  1.2617
[torch.FloatTensor of size 2x5]

pytorch中的squeeze函数、cat函数使用

 

补充:pytorch中 max()、view()、 squeeze()、 unsqueeze()

 

查了好多博客都似懂非懂,后来写了几个小例子,瞬间一目了然。

一、torch.max()

代码如下:


import torch  
a=torch.randn(3)
print("a:\n",a)
print('max(a):',torch.max(a))
 
b=torch.randn(3,4)
print("b:\n",b)
print('max(b,0):',torch.max(b,0))
print('max(b,1):',torch.max(b,1))

pytorch中的squeeze函数、cat函数使用

输出:

a:
tensor([ 0.9558, 1.1242, 1.9503])
max(a): tensor(1.9503)
b:
tensor([[ 0.2765, 0.0726, -0.7753, 1.5334],
[ 0.0201, -0.0005, 0.2616, -1.1912],
[-0.6225, 0.6477, 0.8259, 0.3526]])
max(b,0): (tensor([ 0.2765, 0.6477, 0.8259, 1.5334]), tensor([ 0, 2, 2, 0]))
max(b,1): (tensor([ 1.5334, 0.2616, 0.8259]), tensor([ 3, 2, 2]))

max(a),用于一维数据,求出最大值。

max(a,0),计算出数据中一列的最大值,并输出最大值所在的行号。

max(a,1),计算出数据中一行的最大值,并输出最大值所在的列号。

代码如下:


print('max(b,1):',torch.max(b,1)[1])

pytorch中的squeeze函数、cat函数使用

输出:只输出行最大值所在的列号

代码如下:


max(b,1): tensor([ 3,  2,  2])

pytorch中的squeeze函数、cat函数使用

torch.max(b,1)[0], 只返回最大值的每个数

二、view()

a.view(i,j)表示将原矩阵转化为i行j列的形式

i为-1表示不限制行数,输出1列

代码如下:


a=torch.randn(3,4)
print(a)

pytorch中的squeeze函数、cat函数使用

输出:

tensor([[-0.8146, -0.6592, 1.5100, 0.7615],
[ 1.3021, 1.8362, -0.3590, 0.3028],
[ 0.0848, 0.7700, 1.0572, 0.6383]])

b=a.view(-1,1)
print(b)

输出:

tensor([[-0.8146],
[-0.6592],
[ 1.5100],
[ 0.7615],
[ 1.3021],
[ 1.8362],
[-0.3590],
[ 0.3028],
[ 0.0848],
[ 0.7700],
[ 1.0572],
[ 0.6383]])

i为1,j为-1表示不限制列数,输出1行

代码如下:


b=a.view(1,-1)
print(b)

pytorch中的squeeze函数、cat函数使用

输出:

tensor([[-0.8146, -0.6592, 1.5100, 0.7615, 1.3021, 1.8362, -0.3590,
0.3028, 0.0848, 0.7700, 1.0572, 0.6383]])

i为-1,j为2表示不限制行数,输出2列

代码如下:


b=a.view(-1,2)
print(b)

pytorch中的squeeze函数、cat函数使用

输出:

tensor([[-0.8146, -0.6592],
[ 1.5100, 0.7615],
[ 1.3021, 1.8362],
[-0.3590, 0.3028],
[ 0.0848, 0.7700],
[ 1.0572, 0.6383]])

i为-1,j为3表示不限制行数,输出3列

i为4,j为3表示输出4行3列

代码如下:


b=a.view(-1,3)
print(b)
b=a.view(4,3)
print(b)

pytorch中的squeeze函数、cat函数使用

输出:

tensor([[-0.8146, -0.6592, 1.5100],
[ 0.7615, 1.3021, 1.8362],
[-0.3590, 0.3028, 0.0848],
[ 0.7700, 1.0572, 0.6383]])
tensor([[-0.8146, -0.6592, 1.5100],
[ 0.7615, 1.3021, 1.8362],
[-0.3590, 0.3028, 0.0848],
[ 0.7700, 1.0572, 0.6383]])

三、

 

1.torch.squeeze()

 

压缩矩阵,我理解为降维

a.squeeze(i) 压缩第i维,如果这一维维数是1,则这一维可有可无,便可以压缩

代码如下:


import torch  
a=torch.randn(1,3,4)
print(a)
b=a.squeeze(0)
print(b)
c=a.squeeze(1)
print(c

pytorch中的squeeze函数、cat函数使用

输出:

tensor([[[ 0.4627, 1.6447, 0.1320, 2.0946],
[-0.0080, 0.1794, 1.1898, -1.2525],
[ 0.8281, -0.8166, 1.8846, 0.9008]]])

一页三行4列的矩阵

第0维为1,则可以通过squeeze(0)删掉,转化为三行4列的矩阵

tensor([[ 0.4627, 1.6447, 0.1320, 2.0946],
[-0.0080, 0.1794, 1.1898, -1.2525],
[ 0.8281, -0.8166, 1.8846, 0.9008]])

第1维不为1,则不可以压缩

tensor([[[ 0.4627, 1.6447, 0.1320, 2.0946],
[-0.0080, 0.1794, 1.1898, -1.2525],
[ 0.8281, -0.8166, 1.8846, 0.9008]]])

 

2.torch.unsqueeze()

 

unsqueeze(i) 表示将第i维设置为1

对压缩为3行4列后的矩阵b进行操作,将第0维设置为1

代码如下:


c=b.unsqueeze(0)
print(c)

pytorch中的squeeze函数、cat函数使用

输出一个一页三行四列的矩阵

tensor([[[ 0.0661, -0.2386, -0.6610, 1.5774],
[ 1.2210, -0.1084, -0.1166, -0.2379],
[-1.0012, -0.4363, 1.0057, -1.5180]]])

将第一维设置为1

代码如下:


c=b.unsqueeze(1)
print(c)

pytorch中的squeeze函数、cat函数使用

输出一个3页,一行,4列的矩阵

tensor([[[-1.0067, -1.1477, -0.3213, -1.0633]],
[[-2.3976, 0.9857, -0.3462, -0.3648]],
[[ 1.1012, -0.4659, -0.0858, 1.6631]]])

另外,squeeze、unsqueeze操作不改变原矩阵

以上为个人经验,希望能给大家一个参考,也希望大家多多支持四海网。

本文来自:http://www.q1010.com/181/18576-0.html

注:关于python之pytorch中的squeeze函数、cat函数用法示例的内容就先介绍到这里,更多相关文章的可以留意四海网的其他信息。

关键词:python

您可能感兴趣的文章

  • Python代码实现合并excel文件的简单示例
  • python之Pytorch查看、释放已关闭程序占用的GPU资源的简单示例
  • python之线程池模块之多线程操作的简单示例
  • Python自动扫描出微信不是好友名单的简单示例
  • python之pytorch查看数据类型和大小的简单示例
  • python之pytorch中[..., 0]的用法说明
  • python之数据分析pandas比较操作的简单示例
  • python之pytorch中stack和cat的及to_tensor的坑的深入分析
  • python自动化之定位方法大杀器xpath的介绍
  • python之pytorch手写数字图片识别的实现方法
上一篇:解决python3安装pandas出错的问题
下一篇:python之pytorch手写数字图片识别的实现方法
热门文章
  • Python 处理Cookie的菜鸟教程(一)Cookie库
  • python之pandas取dataframe特定行列的简单示例
  • Python解决json.dumps错误::‘utf8’ codec can‘t decode byte
  • Python通过pythony连接Hive执行Hql的脚本
  • Python 三种方法删除列表中重复元素的简单示例
  • python爬虫代码示例
  • Python 中英文标点转换示例
  • Python 不得不知的开源项目解析
  • Python urlencode编码和url拼接实现方法
  • python按中文拆分中英文混合字符串的简单示例
  • 最新文章
    • Python利用numpy三层神经网络的简单示例
    • pygame可视化幸运大转盘的简单示例
    • Python爬虫之爬取二手房信息的简单示例
    • Python之time库的简单示例
    • OpenCV灰度、高斯模糊、边缘检测的简单示例
    • Python安装Bs4及使用的简单示例
    • django自定义manage.py管理命令的简单示例
    • Python之matplotlib 向任意位置添加一个子图(axes)的简单示例
    • Python图像标签标注软件labelme分析的简单示例
    • python调用摄像头并拍照发邮箱的简单示例

四海网收集整理一些常用的php代码,JS代码,数据库mysql等技术文章。