≡
  • 网络编程
  • 数据库
  • CMS技巧
  • 软件编程
  • PHP笔记
  • JavaScript
  • MySQL
位置:首页 > 网络编程 > Python

解决Python之opencv缺陷检测的问题

人气:274 时间:2021-06-10

这篇文章主要为大家详细介绍了解决Python之opencv缺陷检测的问题,具有一定的参考价值,可以用来参考一下。

感兴趣的小伙伴,下面一起跟随四海网的雯雯来看看吧!

题目描述

利用opencv或其他工具编写程序实现缺陷检测。

实现过程

代码如下:


# -*- coding: utf-8 -*-
'''
作者 : 丁毅
开发时间 : 2021/4/21 15:30
'''
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt


#用于给图片添加中文字符的函数
def cv2ImgAddText(img, text, left, top, textColor=(0, 255, 0), textSize=20):
    # 判断是否OpenCV图片类型
    if (isinstance(img, np.ndarray)):
        img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    # 创建一个可以在给定图像上绘图的对象
    draw = ImageDraw.Draw(img)
    # 字体的格式
    fontStyle=ImageFont.truetype("font/simsun.ttc",textSize, encoding="utf-8")
    # 绘制文本
    draw.text((left, top), text, textColor, font=fontStyle)
    # 转换回OpenCV格式
    return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)

# plt绘图显示中文
plt.rcParams['font.family'] = 'SimHei'
img0 = cv2.imread(r"C:\Users\pc\Desktop\0.bmp")
cv2.imshow('img', img0)
# 彩色图转灰度图
img1 = cv2.cvtColor(img0, cv2.COLOR_BGR2GRAY)

# 缺陷检测
for i in range(1, 6):
    defect_img0 = cv2.imread(r"C:\Users\pc\Desktop\%d.bmp"%i)
    # 获取灰度图像
    defect_img1 = cv2.cvtColor(defect_img0, cv2.COLOR_BGR2GRAY)
    # 获取原图像的灰度直方图
    hist0 = cv2.calcHist([img1], [0], None, [256], [0.0, 255.0])
    # 获取待检测图像的灰度直方图
    hist1 = cv2.calcHist([defect_img1], [0], None, [256], [0.0, 255.0])
    # 为图像添加标题
    plt.title("原图与待检测img%d对比"%i)
    # 添加图例
    plt.plot(hist0, label='原图')
    plt.plot(hist1, label='待检测img%d'%i)
    # 相似度比较
    rst = cv2.compareHist(hist0, hist1, method=cv2.HISTCMP_CORREL)
    # res >= 0.95即认为合格
    cv2.imshow(str(i) + ".img", cv2ImgAddText(defect_img0, "合格" if rst >= 0.95 else "不合格", 20, 20, (255, 0, 0), 25))
    # 设置x轴的数值范围
    plt.xlim([0, 256])
    plt.legend(loc='upper left')
    plt.show()
cv2.waitKey(0)

Python opencv缺陷检测的实现及问题解决

运行结果

问题及解决方法

1.获取原图的直方

参考链接
方式:
cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate ]])

images:输入的图像channels:选择图像的通道mask:是一个大小和image一样的np数组,其中把需要处理的部分指定为1,不需要处理的部分指定为0,一般设置为None,表示处理整幅图像。histSize:使用多少个bin(柱子),一般为256ranges:像素值的范围,一般为[0,255]表示0~255

该函数结果返回一个二维数组,该数组反应画面中亮度的分布和比例。

2.比较两个直方图的相似度


参考链接
方式:
cv2.compareHist(H1, H2, method)

H1:第一个直方图数组H2:第二个直方图数组(与第一个纬度相同)method:所使用的方式

该函数返回一个[0,1]的相似度值,值越接近一就表名相似度越高。

3.相似度参数微调


由于compareHist函数返回一个[0,1]的值,需要自己调整一个阈值来选取哪些合格,经过调整后,发现阈值取[0.90, 0.95]能够正确选取与实验的结果,代码中取的是0.95,即待检测图与原图之间的相似度如果小于0.95则不合格。

4.通过plot显示原图与待检测图的关系折线

参考链接
通过calcHist函数返回的hist数组值,运用matplotlib绘制原图和待检测图之间的关系折线图。对比两个曲线的差异。

到此这篇关于Python opencv缺陷检测的实现的文章就介绍到这了,更多相关opencv缺陷检测内容请搜索四海网以前的文章或继续浏览下面的相关文章希望大家以后多多支持四海网!

本文来自:http://www.q1010.com/181/19124-0.html

注:关于解决Python之opencv缺陷检测的问题的内容就先介绍到这里,更多相关文章的可以留意四海网的其他信息。

关键词:python

您可能感兴趣的文章

  • 解决jupyter notebook图片显示模糊和保存清晰图片的操作的问题
  • Python之生成xml文件,以及美化的简单示例
  • Python之UDP实现720p视频传输的操作的简单示例
  • 解决Python之Jupyter notebook 输出部分显示不全的问题
  • Python之保存json文件并格式化的简单示例
  • Python之通配符glob模块的用法示例
  • 解决Jupyter Notebook中文不能显示的问题的简单示例
  • 解决Python之画的图Type 3 fonts字体不兼容的问题
  • python基础分析之if循环语句的简单示例
  • Python之matplotlib显示图像失真的解决方案用法示例
上一篇:解决Django debug为True时,css加载失败的问题
下一篇:Python之通配符glob模块的用法示例
热门文章
  • Python 处理Cookie的菜鸟教程(一)Cookie库
  • python之pandas取dataframe特定行列的简单示例
  • Python解决json.dumps错误::‘utf8’ codec can‘t decode byte
  • Python通过pythony连接Hive执行Hql的脚本
  • Python 三种方法删除列表中重复元素的简单示例
  • python爬虫代码示例
  • Python 中英文标点转换示例
  • Python 不得不知的开源项目解析
  • Python urlencode编码和url拼接实现方法
  • python按中文拆分中英文混合字符串的简单示例
  • 最新文章
    • Python利用numpy三层神经网络的简单示例
    • pygame可视化幸运大转盘的简单示例
    • Python爬虫之爬取二手房信息的简单示例
    • Python之time库的简单示例
    • OpenCV灰度、高斯模糊、边缘检测的简单示例
    • Python安装Bs4及使用的简单示例
    • django自定义manage.py管理命令的简单示例
    • Python之matplotlib 向任意位置添加一个子图(axes)的简单示例
    • Python图像标签标注软件labelme分析的简单示例
    • python调用摄像头并拍照发邮箱的简单示例

四海网收集整理一些常用的php代码,JS代码,数据库mysql等技术文章。