≡
  • 网络编程
  • 数据库
  • CMS技巧
  • 软件编程
  • PHP笔记
  • JavaScript
  • MySQL
位置:首页 > 网络编程 > Python

python+memcached加速的简单示例

人气:545 时间:2018-10-02

这篇文章主要为大家详细介绍了python+memcached加速的简单示例,具有一定的参考价值,可以用来参考一下。

对python这个高级语言感兴趣的小伙伴,下面一起跟随四海网的小编两巴掌来看看吧!

本来我一直不知道怎么来更好地优化网页的性能,然后最近做python和php同类网页渲染速度比较时,意外地发现一个很简单很白痴但是 我一直没发现的好方法(不得不BS我自己):直接像某些php应用比如Discuz论坛那样,在生成的网页中打印出“本页面生成时间多少多少秒”,然后在 不停地访问网页测试时,很直观地就能发现什么操作会导致瓶颈,怎样来解决瓶颈了。

于是我发现SimpleCD在 生成首页时,意外地竟然需要0.2秒左右,真真不能忍:对比Discuz论坛首页平均生成才0.02秒,而Discuz论坛的首页页面无疑比 SimpleCD的主页要复杂不少;这让我情何以堪啊,因为这必然不是Python语言导致的差距,只能说是我完全没做优化而Discuz程序优化得很好 的后果。

 

其实不用分析也能知道肯定是数据库在拖累,SimpleCD在生成首页时需要在sqlite的三个数据库中进行42多次查询,是历史原因导致的极其低效的一个设计;但是这40多次查询中,其实大部分是非常快的查询,仔细分析一下就有两个是性能大户,其他都不慢。

第一个大户就是:获取数据个数


SELECT count(*) FROM verycd

# End www_512pic_com

这个操作每次都要花不少时间,这是因为每次数据库都要锁住然后遍历一遍主键统计个数的缘故,数据量越大耗时就越大,耗时为O(N),N为数据库大小;实际 上解决这个问题非常容易,只要随便在哪存一个当前数据的个数,只有在增删数据的时候改动就行了,这样时间就是O(1)的了

第二个大户就是:获取最新更新的20个数据列表


SELECT verycdid,title,brief,updtime FROM verycd

    ORDER BY updtime DESC LIMIT 20;

# End www_512pic_com

因为在updtime上面做了索引,所以其实真正查询时间也就是搜索索引的时间而已。然则为什么这个操作会慢呢?因为我的数据是按照publish time插入的,按update time进行显示的话就肯定需要在至少20个不同的地方做I/O,这么一来就慢了。解决的方法就是让它在一个地方做I/O。也就是,除非数据库加入新数据 /改变原有数据,否则把这条语句的返回结果缓存起来。这么一来又快了20倍:)

接下来的是20条小case:取得发布人和点击数信息


SELECT owner FROM LOCK WHERE id=XXXX;

SELECT hits FROM stat WHERE id=XXXX;

# End www_512pic_com

这里为什么没用sql的join语句来省点事呢?因为架构原因这些数据放在不同的数据库里,stat是点击率一类的数据库,因为需要频繁的插入所以用 mysql存储;而lock和verycd是需要大量select操作的数据库,因为mysql悲剧的索引使用情况和分页效率而存放在了sqlite3数 据库,所以无法join -.-

总之这也不是问题,跟刚才的解决方法一样,统统缓存

所以纵观我这个例子,优化网页性能可以一言以蔽之,缓存数据库查询,即可。我相信大部分网页应用都是这样:)

 

终于轮到memcached了,既然打算缓存,用文件做缓存的话还是有磁盘I/O,不如直接缓存到内存里面,内存I/O可就快多了。于是memcached顾名思义就是这么个东东。

memcached是很强大的工具,因为它可以支持分布式的共享内存缓存,大站都用它,对小站点来说,只要出得起内存,这也是好东西;首页所需要的内存缓冲区大小估计不会超过10K,更何况我现在也是内存土豪了,还在乎这个?

配置运行:因为是单机没啥好配的,改改内存和端口就行了


vi /etc/memcached.conf

/etc/init.d/memcached restart

# End www_512pic_com

在python的网页应用中使用之


import memcache

mc = memcache.Client(['127.0.0.1:11211'], debug=0)

# End www_512pic_com

memcache其实就是一个map结构,最常使用的就是两个函数了:

  • 第一个就是set(key,value,timeout),这个很简单就是把key映射到value,timeout指的是什么时候这个映射失效

  • 第二个就是get(key)函数,返回key所指向的value

于是对一个正常的sql查询可以这么干


sql = 'select count(*) from verycd'

c = sqlite3.connect('verycd.db').cursor()

 

# 原来的处理方式

c.execute(sql)

count = c.fetchone()[0]

 

# 现在的处理方式

from hashlib import md5

key=md5(sql)

count = mc.get(key)

if not count:

    c.execute(sql)

    count = c.fetchone()[0]

    mc.set(key,count,60*5) #存5分钟

# End www_512pic_com

其中md5是为了让key分布更均匀,其他代码很直观我就不解释了。

 

优化过语句1和语句2后,首页的平均生成时间已经降低到0.02秒,和discuz一个量级了;再经过语句3的优化,最终结果是首页生成时间降低到了0.006秒左右,经过memcached寥寥几行代码的优化,性能提高了3300%。终于可以挺直腰板来看Discuz了)

本文来自:http://www.q1010.com/181/2006-0.html

注:关于python+memcached加速的简单示例的内容就先介绍到这里,更多相关文章的可以留意四海网的其他信息。

关键词:加速

您可能感兴趣的文章

上一篇:Python 常见17个错误解析
下一篇:vim使用tab进行python代码补全的简单示例
热门文章
  • Python 处理Cookie的菜鸟教程(一)Cookie库
  • python之pandas取dataframe特定行列的简单示例
  • Python解决json.dumps错误::‘utf8’ codec can‘t decode byte
  • Python通过pythony连接Hive执行Hql的脚本
  • Python 三种方法删除列表中重复元素的简单示例
  • python爬虫代码示例
  • Python 中英文标点转换示例
  • Python 不得不知的开源项目解析
  • Python urlencode编码和url拼接实现方法
  • python按中文拆分中英文混合字符串的简单示例
  • 最新文章
    • Python利用numpy三层神经网络的简单示例
    • pygame可视化幸运大转盘的简单示例
    • Python爬虫之爬取二手房信息的简单示例
    • Python之time库的简单示例
    • OpenCV灰度、高斯模糊、边缘检测的简单示例
    • Python安装Bs4及使用的简单示例
    • django自定义manage.py管理命令的简单示例
    • Python之matplotlib 向任意位置添加一个子图(axes)的简单示例
    • Python图像标签标注软件labelme分析的简单示例
    • python调用摄像头并拍照发邮箱的简单示例

四海网收集整理一些常用的php代码,JS代码,数据库mysql等技术文章。